Part II: Demand Side Analysis

Chapter 2

DEMAND THEORY

By Taweewan S.

1

Outline

- Market demand function
- Elasticity:
 - Midpoint elasticity
 - Point elasticity
- Own-price elasticity of demand
- Cross-price elasticity of demand
- Income elasticity of demand
- Advertising elasticity of demand

Market Demand Function

- The market demand function for a product is derived from the <u>horizontal summation of</u> <u>individual direct demand functions</u>.
- For example, <u>there are 3 individual (or consumer)</u> <u>direct demand functions</u> in the market:
 - Consumer 1: $q_1 = f(P)$.
 - Consumer 2: $q_2 = f(P)$.
 - Consumer 3: $q_3 = f(P)$.
- A direct market demand function, Q_D:

$$\mathbf{Q}_{\mathbf{D}} = \mathbf{q}_{1} + \mathbf{q}_{2} + \mathbf{q}_{3}. \tag{1}$$

- Suppose that the total market demand for a product consists of the demands from consumer 1 and consumer 2.
- The demand equations of the two consumers are given as follows:

 $q_1 = f(P) = 20 - 2P$ $q_2 = f(P) = 40 - 5P$

What is the market demand equation for this product?

• The direct market demand equation is

 $Q_D = q_1 + q_2 = (20+40) - (2+5)P = 60 - 7P.$

- Suppose that the total market demand for a product consists of three consumer demands.
- The inverse demand equations of three consumers are given by the following equations:
 - Consumer 1: $P = 10 4q_1$.
 - Consumer 2: $P = 5 2q_2$.
 - Consumer 3: $P = 2 q_3$.

Question: What is the market demand equation for this product?

Answer: $Q_D = 7 - 1.75P$.

Market Demand Function

The relationship between the quantity demanded (Q_X) and all variables that determine demand. $Q_X = f$ (Price of good X, Non-price determinants)

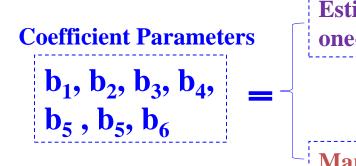
The estimated direct market demand function:

$$Q_{X} = b_{0} + b_{1}P_{X}^{\alpha} + b_{2}I^{\beta} + b_{3}P_{Y}^{\gamma} + b_{4}P_{E}^{\delta} + b_{5}A^{\theta} + b_{6}Pop^{\kappa}$$
(2)

where b_0 , b_1 , b_2 , b_3 , b_4 , b_5 and b_6 are coefficient parameters; $Q_X =$ quantity demanded for good X; $P_X =$ price of good X; I = consumers' income; $P_Y =$ price of good Y; $P_E =$ future expected price; A = Advertising; and Pop = population.

 $(\alpha, \beta, \gamma, \delta, \theta, \kappa) =$ Exponents of determinants of market demand.

 $(P_X, I, P_Y, P_E, A, Pop) =$ Independent variables = Determinants of Q_X .



Estimated of the change in Q_X with respect to a one-unit change in determinant of demand.

Marginal value of Q_X with respect to determinant of demand (see Math Review).

Coefficient Parameters and Calculus

A direct market demand function:

 $\mathbf{Q}_{\mathbf{X}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{P}_{\mathbf{X}}^{\alpha} + \mathbf{b}_2 \mathbf{I}^{\beta} + \mathbf{b}_3 \mathbf{P}_{\mathbf{Y}}^{\gamma} + \mathbf{b}_4 \mathbf{P}_{\mathbf{E}}^{\delta} + \mathbf{b}_5 \mathbf{A}^{\theta} + \mathbf{b}_6 \operatorname{Pop}^{\kappa}$

Coefficient Parameter	Marginal value of Q _X with respect to	Partial derivative of Q_X with respect to the Determinant	
b ₁	$\mathbf{P}_{\mathbf{X}}$ (holding the other factors constant)	$b_1 = \frac{\partial Q_X}{\partial P_X} < 0$	
b ₂	I (holding the other factors constant)	$b_{2} = \frac{\partial Q_{X}}{\partial I} > 0$ $b_{2} = \frac{\partial Q_{X}}{\partial I} < 0$	
b ₃	$\mathbf{P}_{\mathbf{Y}}$ (holding the other factors constant)	$b_{3} = \frac{\partial Q_{X}}{\partial P_{Y}} > 0$ $b_{3} = \frac{\partial Q_{X}}{\partial P_{Y}} < 0$	
b ₄	$P_{E} \\ \text{(holding the other factors constant)}$	$b_4 = \frac{\partial Q_X}{\partial P_E} > 0$	
b ₅	A (holding the other factors constant)	$b_5 = \frac{\partial Q_X}{\partial A} > 0$	
b ₆	POP (holding the other factors constant)	$b_6 = \frac{\partial Q_X}{\partial POP} > 0$	

The market demand for gasoline $(\mathbf{Q}_{\mathbf{G}}^{\mathbf{D}})$, measured in millions of gallons, is given by

 $Q_G^D = 10 - 2P_G + 0.1I + 4P_E$,

where $\mathbf{P}_{\mathbf{G}}$ is the current price of gasoline per gallon (measured in dollars), **I** is average consumer income (measured in thousands of dollars), $\mathbf{P}_{\mathbf{E}}$ is tomorrow's price of gasoline per gallon (measured in dollars).

a) Determine marginal value of Q_G^D with respect to each variable.

Solution:

Marginal value of $\mathbf{Q}_{\mathbf{G}}^{\mathbf{D}}$ with respect to $\mathbf{P}_{\mathbf{G}} = \frac{\partial \mathbf{Q}_{\mathbf{G}}^{\mathbf{D}}}{\partial P_{\mathbf{G}}} = -2$. (holding other variables constant)

• It indicates that a \$1 increase in the current price of gasoline (P_G) will cause a 2-million gallon decrease in the market demand for gasoline.

Marginal value of $\mathbf{Q}_{\mathbf{G}}^{\mathbf{D}}$ with respect to $\mathbf{I} = \frac{\partial \mathbf{Q}_{\mathbf{G}}^{\mathbf{D}}}{\partial I} = +0.1$. (holding other variables constant)

• It indicates that a \$1-thousand increase in average consumer income (I) will cause a 0.1million gallon increase in the market demand of gasoline.

Marginal value of $\mathbf{Q}_{\mathbf{G}}^{\mathbf{D}}$ with respect to $\mathbf{P}_{\mathbf{E}} = \frac{\partial \mathbf{Q}_{\mathbf{G}}^{\mathbf{D}}}{\partial P_{\mathbf{F}}} = +4$. (holding other variables constant)

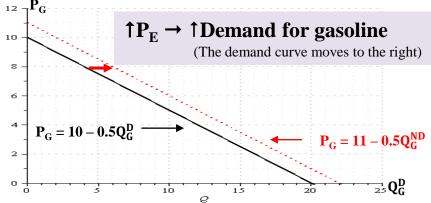
• It indicates that a \$1 increase in the future price of gasoline (P_E) will cause a 4-million gallon increase in the market demand of gasoline.

b) Derive the market demand equation, holding non-price determinants constant. Assume that I = 60 and $P_E = 1$.

Solution: "Holding non-price determinants constant" means substituting I and P_E into the market demand function.

 $Q_G^D = 10 - 2P_G + 0.1(60) + 4(1) = 10 - 2P_G + 6 + 4.$ $Q_G^D = 20 - 2P_G \longrightarrow$ The direct market demand equation

c) Draw the demand curve of gasoline. Solution: to draw the demand curve, we use the inverse demand equation, P = f(Q). The inverse demand equation for gasoline is $P_G = 10 - 0.5Q_G^D$.



d) Suppose that a new report shows that the price of gasoline is going up to \$1.50 at midnight. What is the new market demand equation after increase in the gas price?

Solution:

New direct market demand equation: $Q_G^{ND} = 10 - 2P_G + 0.1(60) + 4(1.5) = 10 - 2P_G + 6 + 6$.

$$\mathbf{Q}_{\mathbf{G}}^{\mathbf{N}\mathbf{D}} = \mathbf{22} - \mathbf{2P}_{\mathbf{G}}.$$

New inverse market demand equation:

$$\mathbf{P}_{\mathbf{G}} = \mathbf{11} - \mathbf{0.5Q}_{\mathbf{G}}^{\mathbf{ND}}$$

Managerial Question

- From the time Apple launched iTunes in mid-2003 through early 2009, it charged 99 cents for each song.
- Music producers/singers wanted Apple to charge more. Question: Should iTunes increase or decrease the price?
- The question is quite important in the business world.

 $\Delta P \rightarrow \Delta T R \rightarrow \Delta \pi$,

where TR = PQ, and $\pi = TR - TC$.

- It can be answered the question by the measurement of *elasticity*.
- *Elasticity* is the most common measure of the sensitivity of the demand function to changes in any of its determinants.

Measurement of Elasticity

Definition: Elasticity (denoted by η , the Greek letter "eta") is a measure of the sensitivity of one variable (**Y**) to changes in another variable (**X**). To calculate elasticity (η), there are 3 formulas as follows:

1. The specific equation is **not given**. The units of **Y** and **X** are given as a percentage.

$$\eta = \frac{\% \text{ Change in } Y}{\% \text{ Change in } X} = \frac{\% \Delta Y}{\% \Delta X}.$$
(3)

2. The specific equation is **not given**. Two different points of **Y** and **X** are given, $\mathbf{Y}^{1}, \mathbf{Y}^{2}, \mathbf{X}^{1}, \mathbf{X}^{2}.$ $\boldsymbol{\eta} = \frac{\frac{\% \Delta Y}{\% \Delta \mathbf{X}}}{\frac{(\mathbf{Y}^{1} + \mathbf{Y}^{2})/2}{(\mathbf{X}^{1} + \mathbf{X}^{2})}} = \frac{\Delta Y}{\Delta \mathbf{X}} \frac{(\mathbf{X}^{1} + \mathbf{X}^{2})}{(\mathbf{Y}^{1} + \mathbf{Y}^{2})} = \frac{(\mathbf{Y}^{2} - \mathbf{Y}^{1})}{(\mathbf{X}^{2} - \mathbf{X}^{1})} \frac{(\mathbf{X}^{1} + \mathbf{X}^{2})}{(\mathbf{Y}^{1} + \mathbf{Y}^{2})}.$ (4)

- Equation (4) is called as **midpoint elasticity or arc elasticity.**
- 3. The specific equation is given, $\mathbf{Y} = \mathbf{f}(\mathbf{X})$. One points of \mathbf{Y} and \mathbf{X} are given.
- $\eta = \frac{\text{Percentage change in the dependent variable}}{\text{Percentage change in the independent variable}} = \frac{\%\Delta Y}{\%\Delta X} = \frac{\Delta Y}{\frac{\Delta X}{X}} = \frac{\Delta Y}{\Delta X} \frac{X}{Y} = \frac{dY}{dX} \frac{X}{Y}.$ (5)
- Equation (5) is called as **point elasticity**.
- As the change in **X** becomes very small, $\Delta \mathbf{X} \to 0$; the ratio $\Delta \mathbf{Y}/\Delta \mathbf{X}$ converges to the derivative of **Y** with respect to **X** (d**Y**/d**X**).

The elasticity for $\mathbf{Y} = \mathbf{f}(\mathbf{X})$ is defined as: $\eta = \frac{\% \text{ Change in } \mathbf{Y}}{\% \text{ Change in } \mathbf{X}} = \frac{\% \Delta \mathbf{Y}}{\% \Delta \mathbf{X}}.$

The demand elasticities for $Q_X = f(P_X, P_Y, I, A)$ is defined as:

Elasticities of Demand	Y		Formula
1. Own-price elasticity of demand (η_X)	Q _X	P _X	$\eta_{\mathbf{X}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{P}_{\mathbf{X}}}$
2. Cross-price elasticity of demand (η_{XY})		P _Y	$\mathbf{\eta}_{\mathbf{X}\mathbf{Y}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{P}_{\mathbf{Y}}}$
3. Income elasticity of demand (η_I)		Ι	$\boldsymbol{\eta}_{\mathbf{I}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{I}}$
4. Advertising elasticity of demand (η_A)		А	$\boldsymbol{\eta}_{\mathbf{A}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{A}}$

1. Own-Price Elasticity of Demand (η_X) (or Price Elasticity of Demand)

- The price elasticity of demand, η_X, measures the sensitivity of demand of good X to changes in the price of good X.
- By definition, η_X is defined to be the percent change in quantity demanded of good X (Q_X) divided to the percent change in price of good X (P_X).

$$\eta_{\mathbf{X}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{P}_{\mathbf{X}}}.$$
(6)

• The midpoint price elasticity of demand, given Q_X^1 , Q_X^2 , P_X^1 , P_X^2 .

$$\eta_{X} = \frac{\% \Delta Q_{X}}{\% \Delta P_{X}} = \frac{\frac{\Delta Q_{X}}{(Q_{x}^{1} + Q_{x}^{2})/2}}{\frac{\Delta P_{X}}{(P_{x}^{1} + P_{x}^{2})/2}} = \frac{\Delta Q_{X}}{\Delta P_{X}} \frac{(P_{x}^{1} + P_{x}^{2})}{(Q_{x}^{1} + Q_{x}^{2})} = \frac{(Q_{x}^{2} - Q_{x}^{1})}{(P_{x}^{2} - P_{x}^{1})} \frac{(P_{x}^{1} + P_{x}^{2})}{(Q_{x}^{1} + Q_{x}^{2})}$$
(7)

• The point price elasticity of demand, given $Q_X = f(P_X)$.

$$\eta_{\rm X} = \frac{dQ_{\rm X}}{dP_{\rm X}} \frac{P_{\rm X}}{Q_{\rm X}}.$$
⁽⁸⁾

The quantity of new cars increases by 10 percent. If the price elasticity of demand for new cars is -1.25, **the price of new cars** will fall by

In the first week after Apple's iTunes raised the price on its most popular songs from 99 cents to \$1.29, the quantity demanded of Doja Cat's "Say So" fell to 58,000 units from the 60,000 units sold in the previous week. **What is the price elasticity of demand for "Say So"?**

$$\eta_{X} = \frac{\% \Delta Q_{X}}{\% \Delta P_{X}} = \frac{(Q_{X}^{2} - Q_{X}^{1})}{(P_{X}^{2} - P_{X}^{1})} \frac{(P_{X}^{1} + P_{X}^{2})}{(Q_{X}^{1} + Q_{X}^{2})}$$
$$\eta_{X} = \frac{(58,000 - 60,000)}{(1.29 - 0.99)} \frac{(0.99 + 1.29)}{(60,000 + 58,000)} = \frac{-2000}{0.3} \frac{2.28}{118,000} = -0.13.$$

The demand for a product is $\mathbf{Q} = \mathbf{9} - \mathbf{0.7P} + \mathbf{2I}$. Assume that per capita income I is \$13. When the price of a product is $\mathbf{P} = 30 , **the price elasticity of demand** is

Properties of Own-Price Elasticity of Demand

1. Own-price elasticity of demand is a negative number; $-\infty \le \eta_X \le 0$.

- $-\infty < \eta_X < -1$ indicates that the demand is <u>price elastic</u>, possibly because a good has many close substitutes.
 - A change in price causes a larger percentage change in quantity demanded.
 - The elastic demand is highly responsive, or sensitive, to changes in the price.
- $-1 < \eta_X < 0$ indicates that the demand is <u>price inelastic</u> because a good has few close substitutes.
 - A change in price causes a smaller percentage change in quantity demanded.
 - Gasoline is a good example because most people need it. When the prices
 of gasoline go up, consumers still buy it. The demand for gasoline does
 not change greatly.

Two extreme cases:

1. $\eta_X = 0$ indicates that a good is <u>perfectly inelastic demand</u>.

P_X

- A change in its price (P) will cause no change in the quantity demanded (Q).
- The quantity demanded is independent of price.
- Example: Lifesaving drugs.

2. $\eta_x = -\infty$ indicates that a good is <u>perfectly elastic demand</u>.

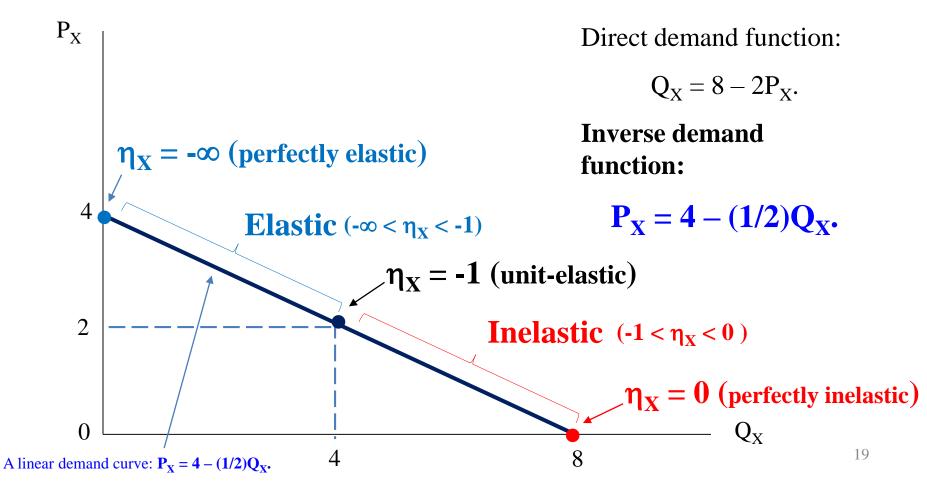
- The quantity demanded is very sensitive to price. P_X
- Any increase in the price will cause demand to fall to zero.
- Example: any homogenous product with many close substitutes, e.g., coffee beans, potatoes.

 $Q_{\rm x}$

 $Q_{\rm X}$

Properties of Price Elasticity (cont.)

2. Given a linear demand curve, η_X is not constant along the curve. η_X increases in absolute value as price rises, approaching negative infinity as quantity approaches zero.



Example 7: Point elasticity

Given $Qx = 1000 - 5Px + 0.1I + 10P_A - 2P_B$

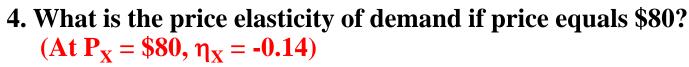
where Qx = Quantity demanded for inkjet printers; Price of a printer (Px) = \$80, Income (I) = \$20,000; Price of good A (P_A) = \$50; Price of good B (P_B) = \$150.

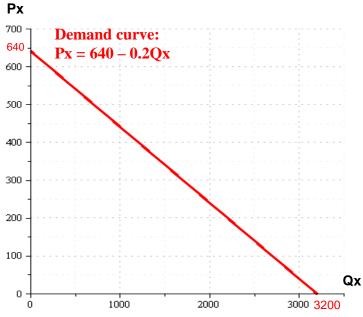
1. Derive the direct demand equation $Qx = f(P_X)$, <u>holding the non-price</u> <u>determinants constant.</u>

Qx = 1000 - 5Px + 0.1(\$20,000) + 10(\$50) - 2(\$150) Qx = 1000 - 5Px + 2200Qx = 3200 - 5Px.

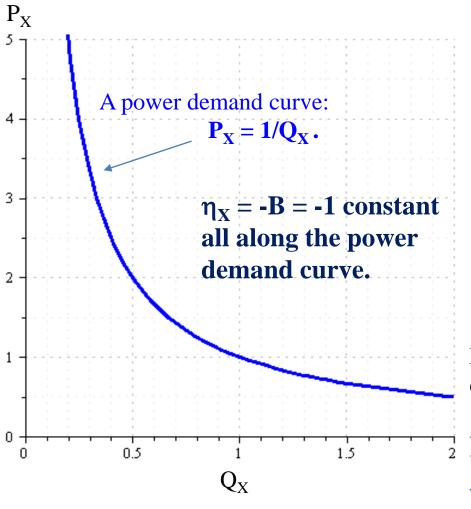
2. At what prices, if any, will the demand for computers be of unitary elasticity (i.e., $\eta_X = -1$)? ($P_X = \$320$)

3. What is the price elasticity of demand if price equals \$520? (At $P_x = $520, \eta_x = -4.3$)





3. Given a power demand function: $Q_X = AP_X^{-B}$, (9) where A and B > 0. $\eta_X = -B$ everywhere on the demand curve.



So, the power demand function is called iso-elastic (constant elasticity).

For example, suppose that A = B = 1, $Q_X = \frac{1}{P_X} = P_X^{-1}$. (10) $\eta_X = \frac{dQ_X}{dP_X} \frac{P_X}{Q_X} = (-1)P_X^{-2} \frac{P_X}{P_X^{-1}}$. $\eta_X = -1$.

Note that: A power demand function is also called a Cobb-Douglas demand function.

A Cobb-Douglas function (for 2 independent variables) takes the form of

 $\mathbf{Y} = \mathbf{A}\mathbf{X}_1^{\mathbf{a}}\mathbf{X}_2^{\mathbf{b}}$, where A, a, and b are constant.

Example 8 Power & Linear Demand Functions

1. Power demand equation: $Q_X = 2P_X^{-4}$.

$$\eta_{X} = \frac{dQ_{X}}{dP_{X}} \frac{P_{X}}{Q_{X}} = (-4)2P_{X}^{-5} \frac{P_{X}}{2P_{X}^{-4}} = -4.$$

- So, η_X of the power demand equation is constant.
- **2.** Linear demand equation: $Q_X = 2 4P_X$.

$$\eta_X = \frac{dQ_X}{dP_X} \frac{P_X}{Q_X} = (-4) \frac{P_X}{Q_X}.$$

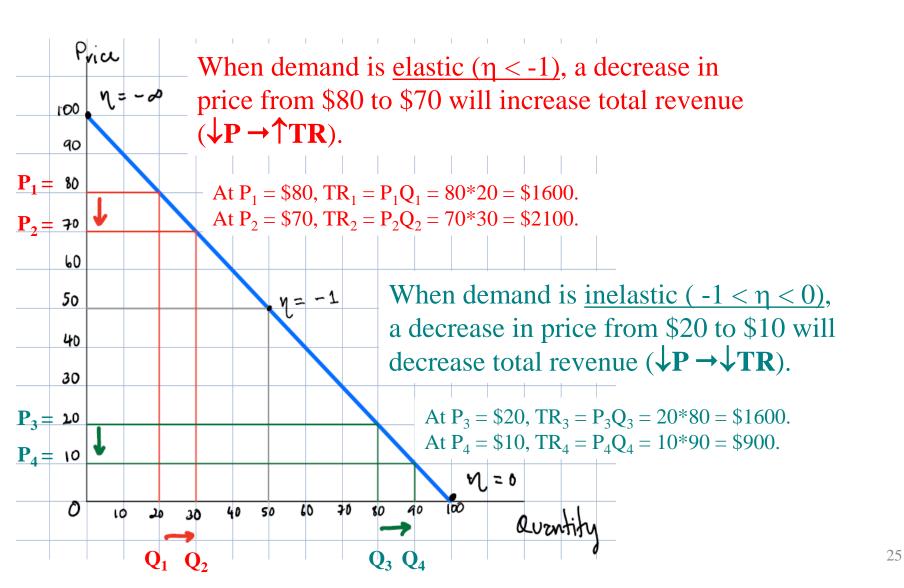
- So, η_X of the linear demand equation depends on $\frac{P_X}{O_X}$.
- The different values of P_X and Q_X will have the different values of $\eta_X.$

Effect of Price Elasticity on the Firm's Total Revenue

Total Revenue and Price Elasticity

- Total Revenue: $\mathbf{TR} = \mathbf{P}_{\mathbf{X}} \times \mathbf{Q}_{\mathbf{X}}$. (11)
- When managers change the price of a product, TR also changes.
- Managers need to decide whether a price change will increase the firm's total revenue. The decision depends on the price elasticity of demand.

Demand, Price Elasticity, and Total Revenue



Relationship between Price Elasticity (η_X) and Total Revenue (TR)

A negative relationship between P_x and TR.

- When demand is elastic ($\eta_X < -1$), price and total revenue move in opposite direction.
 - $\uparrow \mathbf{Px} \rightarrow \mathbf{\downarrow} \mathbf{TR}.$
 - $\downarrow Px \rightarrow \uparrow TR.$
- When demand is inelastic $(-1 < \eta_X < 0)$, price and total revenue move in the same direction.
 - ↑Px → ↑TR. A positive relationship between P_X and TR.
 ↓Px → ↓TR.

Note that calculus proof of the relationship between TR and η_X is in Math Review, Slide#53, Appendix A.

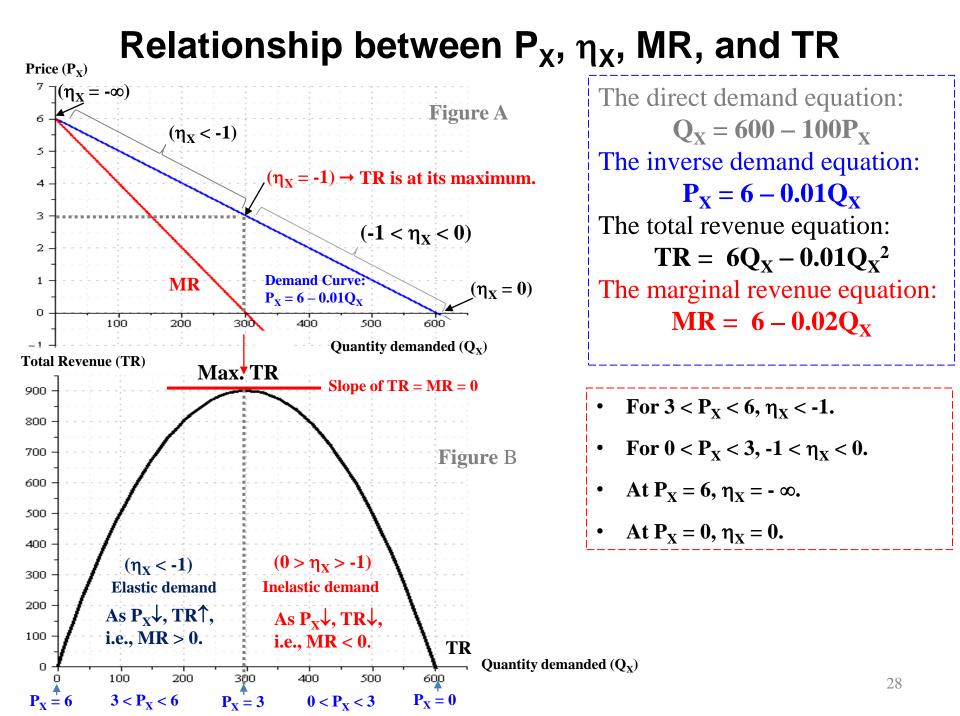
Price Elasticity, Total Revenue, and Marginal Revenue

- TR = the total amount of money consumers spend on the product in a given time period.
- Marginal Revenue (MR): MR is the change in total revenue for a unit change in quantity demanded.
- $\mathbf{MR} = \mathbf{dTR}/\mathbf{dQ}_{\mathbf{X}}$ (derivative of TR with respect to $\mathbf{Q}_{\mathbf{X}}$).
- MR = Slope of total revenue curve.

Example 9: A direct demand equation: $Q_X = 600 - 100P_X$

An inverse demand equation: $P_X = 6 - 0.01Q_X$

- $TR = P_X Q_X = (6 0.01 Q_X) Q_X = 6Q_X 0.01 Q_X^2$.
- $MR = dTR/dQ_X = 6 0.02Q_X$.



Marginal Revenue and Price Elasticity

- MR varies along a demand curve for different quantities and prices.
- Since MR depends on the slope of the demand curve and so does elasticity, it turns out that one can write MR for any point on the demand curve as a function of the price and the price elasticity at that point on the demand curve.

$$\mathbf{MR} = \mathbf{P}_{\mathbf{X}} \left(\mathbf{1} + \frac{\mathbf{1}}{\mathbf{\eta}_{\mathbf{X}}} \right)$$
(12)

• Example 10: If price is \$25 when the price elasticity of demand is -0.5, then marginal revenue must be:

$$MR = \$25\left(1 + \frac{1}{(-0.5)}\right) = -25.$$

Note that calculus proof of the relationship between MR and η_X is in Math Review, Slide#54, Appendix A.

Profit-maximizing Price and Price Elasticity

• The profit maximization condition (see marginal analysis in Math Review):

$\mathbf{MR} = \mathbf{MC}.$

• Using Equation (12), the profit-maximizing condition is

$$\mathsf{P}_{\mathsf{X}}^*\left(\mathbf{1}+\frac{\mathbf{1}}{\eta_{\mathsf{X}}}\right)=\mathsf{M}\mathsf{C}.$$

• The profit-maximizing price is

$$\mathbf{P}_{\mathbf{X}}^* = \frac{\mathbf{MC}}{\left(1 + \frac{1}{\eta_{\mathbf{X}}}\right)}.$$
(13)

• **Example 11**: A monopoly incurs a marginal cost of \$1 for each unit produced. If the price elasticity of demand equals -2.0, calculate the profit-maximizing price (P_X^*) .

$$P_X^* = \frac{1}{\left(1 + \frac{1}{(-2)}\right)} = \$2.$$

2. Cross-price Elasticity of Demand (η_{XY} **)**

- The cross-price elasticity of demand, η_{XY} , measures the sensitivity of demand to changes in the prices of the other product.
- By definition, η_{XY} is defined to be the percent change in quantity demanded of good X (Q_X) divided to the percent change in a price of good Y (P_Y).

$$\eta_{XY} = \frac{\% \Delta Q_X}{\% \Delta P_Y}.$$
 (14)

• The midpoint cross-price elasticity of demand, given Q_X^1 , Q_X^2 , P_Y^1 , P_Y^2 .

$$\eta_{XY} = \frac{\frac{\Delta Q_X}{(Q_X^1 + Q_X^2)/2}}{\frac{\Delta P_Y}{(P_Y^1 + P_Y^2)/2}} = \frac{(Q_X^2 - Q_X^1)}{(P_Y^2 - P_Y^1)} \frac{(P_Y^1 + P_Y^2)}{(Q_X^1 + Q_X^2)}.$$
 (15)

• The point cross-price elasticity of demand, given $Q_X = f(P_X, P_Y)$.

$$\eta_{XY} = \frac{\partial Q_X}{\partial P_Y} \frac{P_Y}{Q_X}.$$
 (16)

Cross-price elasticity of demand

$$\eta_{XY} = \frac{\partial Q_X}{\partial P_Y} \frac{P_Y}{Q_X}$$
(16)

Sign of η_{XY} depends on $\frac{\partial Q_x}{\partial P_y}$.

• If $\frac{\partial Q_x}{\partial P_y} > 0$, $\eta_{XY} > 0$. That means the two products are substitutes.

Example: Wheat and corn, tea and coffee, Xbox and Nintendo Switch

• If $\frac{\partial Q_x}{\partial P_y} < 0$, $\eta_{XY} < 0$. That means the two products are complements.

Example: Computers and computer software, tablets and applications

• If $\frac{\partial Q_x}{\partial P_y} = 0$, $\eta_{XY} = 0$. That means the two products are independent.

Example: Butter and airline ticket.

Example 12: Cross-price point elasticity of demand

- Given: $Q_X = 1000 0.2P_X + 0.5P_Y + 0.04I$,
- Let $Q_X = 100$ units and $P_Y = 20 .
- Calculate cross-price elasticity (η_{XY})

$$\eta_{XY} = \frac{\partial Q_X}{\partial P_Y} \frac{P_Y}{Q_X} = 0.5 \frac{20}{100} = 0.1.$$

• Since η_{XY} is positive, Goods X and Y are substitutes.

3. Income Elasticity of Demand (η_I)

- The income elasticity of demand, η_I, measures the sensitivity of demand to changes in buyers' incomes.
- By definition, η_{I} is defined to be the percent change in quantity demanded of good X (Q_{X}) divided to the percent change in income (I).

$$\eta_{\mathbf{I}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{I}}.$$
(17)

• The midpoint income elasticity of demand, given Q_X^1 , Q_X^2 , I^1 , I^2 .

$$\eta_{I} = \frac{\frac{\Delta Q_{X}}{(Q_{X}^{1} + Q_{X}^{2})/2}}{\frac{\Delta I}{(I^{1} + I^{2})/2}} = \frac{(Q_{X}^{2} - Q_{X}^{1})}{(I^{2} - I^{1})} \frac{(I^{1} + I^{2})}{(Q_{X}^{1} + Q_{X}^{2})}.$$
(18)

• The point income elasticity of demand, given $Q_X = f(P_X, I)$.

$$\eta_{I} = \frac{\partial Q_{X}}{\partial I} \frac{I}{Q_{X}}.$$
⁽¹⁹⁾

• Note that income can be defined as aggregate consumer income or as per capita income.

Income Elasticity of Demand

$$\eta_I = \frac{\% \Delta Q_X}{\% \Delta I} = \frac{\partial Q_X}{\partial I} \frac{I}{Q_X}$$
(19)

• Income elasticity of demand depends on the sign of $\frac{\partial Q_X}{\partial I}$.

• If
$$\frac{\partial Q_X}{\partial I} > 0, \eta_I > 0.$$

• A normal good is one for which an increase in income leads to an increase in demand.

• If
$$\frac{\partial Q_X}{\partial I} < 0, \eta_I < 0.$$

• An inferior good is one for which an increase in income leads to a decrease in demand.

Example 13: Income elasticity of demand

- Given: $Q_X = 1000 0.2P_X + 0.5P_Y + 0.04I$,
- Let $Q_X = 2000$, $P_Y = 500$, and I = 10000.
- Calculate income elasticity

$$\eta_{\rm I} = \frac{\partial Q_{\rm X}}{\partial {\rm I}} \frac{{\rm I}}{Q_{\rm X}} = 0.04 \frac{10000}{2000} = 0.2.$$

- The income elasticity for good X is 0.2, which means that a 1% increase in income cause demand for Good X to increase by 0.2%.
- Since η_I is positive, Good X is normal.

4. Advertising Elasticity of Demand (η_A)

- The advertising elasticity of demand, η_A, measures the sensitivity of demand to change in the sellers' advertising expenditure.
- By definition, η_A is defined to be the percent change in quantity demanded of good X (Q_X) divided to the percent change in advertising expenditure (A).

$$\eta_{\mathbf{A}} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{A}}.$$
⁽²⁰⁾

• The midpoint advertising elasticity of demand, given Q_X^1 , Q_X^2 , A^1 , A^2 .

$$\eta_{A} = \frac{\frac{\Delta Q_{X}}{(Q_{X}^{1} + Q_{X}^{2})/2}}{\frac{\Delta A}{(A^{1} + A^{2})/2}} = \frac{(Q_{X}^{2} - Q_{X}^{1})}{(A^{2} - A^{1})} \frac{(A^{1} + A^{2})}{(Q_{X}^{1} + Q_{X}^{2})}$$
(21)

• The point advertising elasticity of demand, $Q_X = f(P_X, A)$.

$$\eta_{A} = \frac{\% \Delta \mathbf{Q}_{\mathbf{X}}}{\% \Delta \mathbf{A}} = \frac{\partial \mathbf{Q}_{\mathbf{X}}}{\partial \mathbf{A}} \frac{\mathbf{A}}{\mathbf{Q}_{\mathbf{X}}}.$$
(22)

Example 14: Advertising Elasticity of Demand

Given: $Q_X = 500 - 0.5P_X + 0.01I + 0.02A$ and advertising-to-sales ratio $(A/Q_X) = 2$. Calculate advertising elasticity of demand.

$$\eta_A = \frac{\partial Q_X}{\partial A} \frac{A}{Q_X} = 0.02(2) = 0.04.$$

• The advertising elasticity for good X is 0.04, which means that a 1% increase in advertising expenditure will increase the demand for good X by 0.04%.

Recap

- Market demand function
- Elasticities: η_X , η_{XY} , η_I , and η_A
 - Midpoint and point elasticities
- The own-price elasticity:
 - Linear demand function
 - Power demand function
 - The relationship between TR, MR, and η_X .
 - η_X and optimal pricing policy

$$MC = P_X \left(1 + \frac{1}{\eta_X} \right) \longrightarrow P_X^* = \frac{MC}{\left(1 + \frac{1}{\eta_X} \right)}$$

Extra Questions

1. Suppose the market demand curve for pizza can be expressed as $Q_D = 100 - 2P + 3Pb$, where Q_D is the quantity of pizza demanded, P is the price of pizza, and Pb is the price of a burrito. What is the relationship between burritos and pizza, from the point of view of consumers?

- A. They are independent.
- B. They are complements.
- C. They are substitutes.
- D. They are inferior goods.
- E. Not enough information to answer the question.

2. When the price of bananas is 50 cents a pound, the total demand is 100 pounds. If the price increases to 60 cents, the total demand drops to 60 pounds. **What is the price elasticity of demand?**

3. When the price of bananas increases from 50 cents to 60 cents, the total demand drops 50%. What is the price elasticity of demand?

4. A fall in the price of X from \$12 to \$8 causes an increase in the quantity of Y demanded from 900 to 1100 units. **What is the cross-price elasticity of demand?**

5. If the demand for coffee is Q = 25000 - 0.5P, where Q is the number of tons produced and P is the price per ton, total revenue is maximized when the output level (Q*) is

Answer: Q* = **12500 tons.**

6. The demand for tickets to a concert is given by $\mathbf{Q} = \mathbf{1000P^{-1.5}I^2}$ where P is the price of a ticket. Assume that per capita income, I, is \$2000. At a price, P, of \$70 the price elasticity of demand is

7. Demand for Post Malone CDs is equal to $Q_M = P_M^{-2} I^{1.5} P_E^4$ where Q_M is the quantity of Post Malone CDs, P_M is the price of a Malone CD, I is per capital income, and P_E is the price of a Billie Eilish CD.

a. Calculate the cross-price elasticity (η_{ME}).

b. What is the relationship between Malone and Eilish CDs?

Answer: a)
$$\eta_{ME} = 4$$
 b) substitutes 46